Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations
نویسنده
چکیده
Forced turbulence simulations are used to determine the turbulent kinematic viscosity, νt, from the decay rate of a large scale velocity field. Likewise, the turbulent magnetic diffusivity, ηt, is determined from the decay of a large scale magnetic field. In the kinematic regime, when the field is weak, the turbulent magnetic Prandtl number, νt/ηt, is about unity. When the field is nonhelical, ηt is quenched when magnetic and kinetic energies become comparable. For helical fields the quenching is stronger and can be described by a dynamical quenching formula.
منابع مشابه
Alpha effect and diffusivity in helical turbulence with shear
Aims. We study the dependence of turbulent transport coefficients, such as α effect and turbulent magnetic diffusivity, on shear and magnetic Reynolds number in the presence of helical forcing. Methods. We use three-dimensional direct numerical simulations with periodic boundary conditions and measure turbulent transport coefficients using the kinematic test field method. In all cases the magne...
متن کاملCurrent Status of Turbulent Dynamo Theory From Large-Scale to Small-Scale Dynamos
Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of ...
متن کاملFrom large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of ...
متن کاملConvection-driven spherical shell dynamos at varying Prandtl numbers
Context. Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims. We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods. We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various ...
متن کاملOn Cross-phase and the Quenching of the Turbulent Diffusion of Magnetic Fields in Two Dimensions
Nonlinear closure models of the two-dimensional magnetohydrodynamic equations predict that the turbulent diffusivity of magnetic fields in high magnetic Reynolds number flows will be strongly suppressed below the value predicted by simple kinematic models. The consequences of such “resistivity quenching” for models of dissipation and transport in astrophysical plasmas are profound. However, to ...
متن کامل